Mushroom bodies suppress locomotor activity in Drosophila melanogaster.

نویسندگان

  • J R Martin
  • R Ernst
  • M Heisenberg
چکیده

Locomotor activity of single, freely walking flies in small tubes is analyzed in the time domain of several hours. To assess the influence of the mushroom bodies on walking activity, three independent noninvasive methods interfering with mushroom body function are applied: chemical ablation of the mushroom body precursor cells; a mutant affecting Kenyon cell differentiation (mushroom body miniature); and the targeted expression of the catalytic subunit of tetanus toxin in subsets of Kenyon cells. All groups of flies with mushroom body defects show an elevated level of total walking activity. This increase is attributable to the slower and less complete attenuation of activity during the experiment. Walking activity in normal and mushroom body-deficient flies is clustered in active phases (bouts) and rest periods (pauses). Neither the initiation nor the internal structure, but solely the termination of bouts seems to be affected by the mushroom body defects. How this finding relates to the well-documented role of the mushroom bodies in olfactory learning and memory remains to be understood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells

The fruit fly Drosophila melanogaster represents a key model organism for analyzing how neuronal circuits regulate behavior. The mushroom body in the central brain is a particularly prominent brain region that has been intensely studied in several insect species and been implicated in a variety of behaviors, e.g., associative learning, locomotor activity, and sleep. Drosophila melanogaster offe...

متن کامل

Electrophysiological Correlates of Rest and Activity in Drosophila melanogaster

Extended periods of rest in Drosophila melanogaster resemble mammalian sleep states in that they are characterized by heightened arousal thresholds and specific alterations in gene expression. Defined as inactivity periods spanning 5 or more min, amounts of this sleep-like state are, as in mammals, sensitive to prior amounts of waking activity, time of day, and pharmacological intervention. Cle...

متن کامل

Effect of taurine and caffeine on sleep–wake activity in Drosophila melanogaster

Caffeine and taurine are two major neuromodulators present in large quantities in many popular energy drinks. We investigated their effects on sleep-wake control in constant darkness using the fruit fly Drosophila as a model system. It has been shown that caffeine, as the most widely used psychostimulant, can boost arousal through the dopamine pathway in the mushroom bodies of flies. Taurine is...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster.

Whether or not mechanisms underlying circadian locomotor rhythms and learning are related anatomically through the mushroom bodies (MBs) was investigated by monitoring behavioral rhythmicity in flies with MB lesions induced by chemical ablation and by mutations in five different genes. All flies tested were later examined histologically to assess (1) MB neuroanatomy, and (2) the condition of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Learning & memory

دوره 5 1-2  شماره 

صفحات  -

تاریخ انتشار 1998